
1

Solving the
Blockchain Trilemma
Tal Rabin
Fabrice Benhamouda

Expolab & UC Davis
Class ECS 189F

Why Blockchain & Crypto?

Blockchain: Decentralized Technology
• Distributed, secure, efficient ledger

• Efficient means of exchange
• Infrastructure of the future

• Enables value to flow freely

• Opens doors for inclusive participation

Crypto: An Asset Class

• Lending / Bonds

• Staking / Yield

• Futures / Derivatives / Swaps

• Stablecoins

• Tokenized Assets

2

Nee
d e

ac
h

oth
er

Focus of the Talk

Particularly, in Algorand participation is based on stake

3

Databases Fails to Work for Many Applications

Centralized management:

– Who has access
– What types of data they can have
– What is stored in it
– What is deleted
– What is archived

• Single point of failure (insider/intruder)
• Deny or fail to provide access
• Hard to access globally
• Hard to maintain and manage data

replication across multiple databases
• Expensive, requires special skills

4

Blockchain (sequence of data organized by blocks)

Data
Block

Data
Block

⋯ Data
Block

(1) Writable by All (2) Readable by All (3) Tamperproof for All

5

Blockchain Properties

ü Global instant access

ü Trust and accountability

ü Tamperproof append only log

ü Cheap to transact and
share information

ü Virtually impossible to break the system!

6

Blockchain is Good for

ü Notarization and Storage
ü Ordering of information

ü Payments and cryptocurrencies
ü Supply chains

And a Lot More

The Blockchain Trilemma

§ Security
§ Transactions cannot be tampered nor removed once committed

§ Scalability
§ Support high volume of transactions for real-world use

§ Decentralization
§ Allows anybody to participate in the consensus

“At most two of…”

Se
cu

rit
y

ScalabilityDecentralization

Algorand Blockchain Pure Proof-of-Stake

Participation Scalability
Scalable to billions of users participating in the
consensus. Performance is (mostly) independent
of the number of participation nodes.

Minimal Computation
Extremely energy efficient with minimal

computations needed making it
environmentally friends to run the network

Scalability
>1000 Transactions Per Second: Scales to
billions of users. Blocks propagate every 5
Seconds with immediate transaction finalityNo Forking

Each block remains on the chain and is
mathematically guaranteed not to fork
so no small subset of the tokens can
endanger the system or create a fork

True Security
Inherent protection against protocol
and network attacks, and highly
resilient with global node distribution

True Decentralization
Influence on block generation is directly
proportional to the total stake owned in the
system, regardless of how many wallets the
tokens are held in

Cost Efficient
Cost effective at scale with .001 Algo
cost per transaction like all other
transactions on the network

Rich Developer Resources
Easy to use with templates and developer resources

that include documentation, tutorials, solutions,
forums and more

1

2

3

4
5

6

7

8

9

General Approach for Generating New Blocks

• “Win” the right to add the new block

• Winner provides:
– Certificate that it is the winner

– The next block

• Block is added to the chain

PoS

Delegated & Bonded
Proof-of-Stake (PoS)

• Not simultaneously decentralized,
scalable & secure

• Lack security:
○ Trust is centralized in Delegated

systems
○ Bonded systems have a high

barrier to entry

First Generation Blockchains
Proof-of-Work (PoW)

• Not simultaneously decentralized,
scalable & secure

• High cost per transaction
• Lack speed, finality & throughput
• Consume an enormous amount

power

PPoSPoW
Algorand

Pure Proof-of-Stake (PPoS)
• Simultaneously decentralized,

scalable & secure
• Low cost per transaction
• Speed & throughput at 1,000 TPS

with Finality in < 5 Sec.
• Consume little power with

minimum computation

Other Blockchain vs. Algorand’s Blockchain

11

Bitcoin – Nakamoto’s Consensus – Proof of Work

Bitcoin - Nakamoto’s Consensus – Proof of Work

13

Bitcoin - Nakamoto’s Consensus – Proof of Work

14

Algorand’s Consensus – Proof of Stake

Algorand’s Consensus – Proof of Stake

16

Algorand’s Consensus – Proof of Stake

Do we like
this block?

17

Algorand’s Consensus – Proof of Stake

Do we like
this block?
Yes

Bitcoin – Nakamoto’s Consensus
Proof of Work

Algorand’s Consensus – Proof of Stake
Certificate

Algorand’s Consensus – Proof of Stake
Certificate created via a Verifiable Random Function
(cryptographic sortition)

Do we like this block?? Resolved via
Byzantine Agreement (BA).

Each step of BA is performed by a different
unknown set of parties.

Yes

Algorand’s Consensus – Proof of Stake
Certificate created via a Verifiable Random Function
(cryptographic sortition)
• Introduced by Micali, Rabin, Vadhan
• Very efficient to compute
• Very efficient to verify

Key Idea
1) Sample a small committee at random from the set of all users

2) The committee runs the Byzantine
Agreement to agree on a block
of transactions, proposed by the party
who won the previous step. Every
member verifies transactions and
digitally signs it.

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%

3) The block is added to the chain

How does is this committee chosen?

Same way as before. They win the right to be in the
committee and present a certificate indicating that
they have won.

23

Technical Advancements

• A new and super fast Byzantine agreement – Allows system to agree on a new block
while that block propagates

• VRFs (Verifiable Random Function) is open sourced and Cryptographic Self-Selection to
Blockchains. Allow users to secretly, fairly and provable select themselves

• Player Replaceability – Withstands the corruption of all users in the middle of a
protocol.

Follow-up work: computing any function in this model,
which we call YOSO You Only Speak Once

𝐵"&&

𝐵#&&𝐵#&

𝐵%

𝐵#&&&

…

𝐵$&&𝐵$&&&

𝐵" 𝐵"&

𝐵!

𝐵$

𝐵#
vs.

Never a fork

Finality!!
(transactions confirmed
in seconds not an hour)

Efficient one-by-one block generation

+ Efficiency

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%…

Algorand

Proof of Work

♦ Trivial Computation

♦ True Decentralization

♦ Finality of Payments

♦ Scalability

♦ Security

Single Class of Users (no exogenous powers)

Blocks generated as fast as can be propagated

𝑃𝑟𝑜𝑏 𝑓𝑜𝑟𝑘 ≤ 10!"#

Against a dynamic Adversary

Main Assumption: 80% of honest money

Main Technical Advantages

1 block/sec ⇒ 1 fork in the age of the Universe

Resolving the Blockchain Trilemma

§ Security
§ Committee members are not known until after the fact
§ Everything is cryptographically signed

§ Scalability
§ Minimal messages
§ Lottery execution extremely fast
§ Committees are small

§ Decentralization
§ Low barrier to entry
§ Anyone can participate in consensus

“At most two of…”

Se
cu

rit
y

ScalabilityDecentralization

27

Algorand Features
Building layer by layer ...

Layer-2
Smart Contracts

Layer-1 Smart Contracts,
Algorand Standard Assets,

Atomic Transfers

Consensus protocol
(cryptocurrency = Algos)

Solving the
Blockchain
Trilemma

1. Same safety
2. Same speed
3. Same cost

1. More expressiveness
2. Without slowing down

layers below

28

Algorand Features
Building layer by layer ...

Layer-2
Smart Contracts

Layer-1 Smart Contracts,
Algorand Standard Assets,

Atomic Transfers

Consensus protocol
(cryptocurrency = Algos)

Solving the
Blockchain
Trilemma

1. Same safety
2. Same speed
3. Same cost

1. More expressiveness
2. Without slowing down

layers below

29

Algorand Standard Assets (ASA)

• Native token
– Same transaction fee as the Algo

– Same throughput/latency

• Optional administrator:
– Mint and burn units

– Freeze accounts

– Revoke an asset

• Comparison with Ethereum
– Similar to ERC-20/ERC-721

– No smart contract

– Lower transaction fee

Introduction

Create your token in one-click on asa.algodesk.io !

More than 2.5M
transactions / week

just for Props

30

Algorand Standard Assets (ASA)

• Stable coins: USDC, USDT, …
– https://www.circle.com/en/usdc, https://tether.to

• Rewards:
– https://propsproject.com, https://planetwatch.io/

• Stocks, real-estate shares, …:
– https://about.mese.io, https://assetblock.com

Real-World Examples

• Notarization
– https://dedit.io

• And many more…

https://www.circle.com/en/usdc
https://tether.to/
https://propsproject.com/
https://planetwatch.io/
https://about.mese.io/
https://assetblock.com/
https://dedit.io/

31

Atomic Transfers / Group Transactions

Alice Bob

2 Algo

1 USDC

Atomic transfer:

Either all transactions succeed
Or all transactions fail

(work for up to 16 transactions)

32

Layer-1 Stateless Smart Contracts

• Approve / reject transactions from account
• Written in a simple stack-based language: TEAL

– No loop, restriction on size and number of cryptographic operations

– Advantages: easier to formally analyze & less error-prone than Solidity

– PyTEAL: write scripts in Python

• Same transaction fee as normal transaction!
– Same latency (1 block every 4.5s), same throughput (1MB block)

• Combinable with all the other features (atomic transfers, ASA, …)
– Can check all the transaction fields

Introduction

33

Stateless
A simple market

Alice

Bob

2 Algos
1 USDC

Albert

2 Algos

1 USDC

Alma

2 Algos

1 USDC

Signed by
Albert

Signed by
Alice

Signed by
Alma

Signed by
Bob

Signed by
Bob

Signed by
Bob

Layer-1
Stateless

Smart
Contract

TEAL Stack Architecture
txn CloseRemainderTo
addr SOEI...
==
txn Receiver
addr SOEI...
==
&&
arg 0
len
int 32
==
&&
arg 0
sha256
byte base64 VeU...
==
&&
txn CloseRemainderTo
addr RFGE...
==
...

Program
uint64/[]byte

uint64/[]byte

uint64/[]byte

Stack

…(up to 1000)

0: uint64/[]byte

1: uint64/[]byte

2: uint64/[]byte

Scratch Space

...

255: uint64/[]byte

0: []byte

1: []byte

2: []byte

Args
(This txn only)

…(up to 255)

● Sender
● Fee
● FirstValid
● FirstValidTime
● LastValid
● Note
● Lease
● Receiver
● Amount
● CloseRemainderTo
● VotePK
● SelectionPK
● VoteFirst
● VoteLast
● VoteKeyDilution
● Type
● TypeEnum
● XferAsset
● AssetAmount
● AssetSender
● AssetReceiver
● AssetCloseTo
● GroupIndex
● TxID

Transaction(s)

TEAL Example
txn CloseRemainderTo
addr SOEI...
==
txn Receiver
addr SOEI...
==
&&
arg 0
len
int 32
==
&&
arg 0
sha256
byte base64 VeU...
==
&&
txn CloseRemainderTo
addr RFGE...
==
...

Program
CloseRemainderTo

uint64/[]byte

uint64/[]byte

…(up to 1000)

● Sender
● Fee
● FirstValid
● FirstValidTime
● LastValid
● Note
● Lease
● Receiver
● Amount
● CloseRemainderTo
● VotePK
● SelectionPK
● VoteFirst
● VoteLast
● VoteKeyDilution
● Type
● TypeEnum
● XferAsset
● AssetAmount
● AssetSender
● AssetReceiver
● AssetCloseTo
● GroupIndex
● TxID

Transaction(s)Push Transaction
CloseRemainderTo to Stack

Stack

TEAL Example
txn CloseRemainderTo
addr SOEI...
==
txn Receiver
addr SOEI...
==
&&
arg 0
len
int 32
==
&&
arg 0
sha256
byte base64 VeU...
==
&&
txn CloseRemainderTo
addr RFGE...
==
...

Program
Byte constant

CloseRemainderTo

uint64/[]byte

…(up to 1000)

● Sender
● Fee
● FirstValid
● FirstValidTime
● LastValid
● Note
● Lease
● Receiver
● Amount
● CloseRemainderTo
● VotePK
● SelectionPK
● VoteFirst
● VoteLast
● VoteKeyDilution
● Type
● TypeEnum
● XferAsset
● AssetAmount
● AssetSender
● AssetReceiver
● AssetCloseTo
● GroupIndex
● TxID

Transaction(s)

Convert address to byte constant and
push to the stack

Stack

TEAL Example
txn CloseRemainderTo
addr SOEI...
==
txn Receiver
addr SOEI...
==
&&
arg 0
len
int 32
==
&&
arg 0
sha256
byte base64 VeU...
==
&&
txn CloseRemainderTo
addr RFGE...
==
...

Program
1/0

uint64/[]byte

uint64/[]byte

…(up to 1000)

● Sender
● Fee
● FirstValid
● FirstValidTime
● LastValid
● Note
● Lease
● Receiver
● Amount
● CloseRemainderTo
● VotePK
● SelectionPK
● VoteFirst
● VoteLast
● VoteKeyDilution
● Type
● TypeEnum
● XferAsset
● AssetAmount
● AssetSender
● AssetReceiver
● AssetCloseTo
● GroupIndex
● TxID

Transaction(s)

Pops the top two values off the stack and replaces with
1 or 0 depending on if they were equal

Stack

38

Layer-1 Stateless Smart Contract

• Only approve/reject transactions
• Cannot directly store state
• But can use Algorand Standard Assets as state

much more expressive than they look

• Example: Dutch auction
– Puzzle: Find how to do it!

A Puzzle

39

Layer-1 Stateful Smart Contracts

• Applications on the blockchain
• Read & save state
• Written in the same stack-based language: TEAL

– No loop, restriction on size and number of cryptographic operations

– Restriction on storage: constant-size for global state & constant-size per account

• Same transaction fee as normal transaction!
– Same latency (1 block every 4.5s), same throughput (1MB block)

• Can be combined with stateless smart contracts to hold Algos & assets

Introduction

40

Layer-1 Stateful Smart Contracts

• Vote:
– Store globally the tally

– Store in each account that votes what they voted for

• Crowdfunding:
– Users can fund a project

– If funding goal is not reached, funds are reimbursed to users

• AlgoSwap: (equivalent of UniSwap)
– Decentralized exchange

– Price is determined by the liquidity provided by users

Examples

41

Layer-1 Features

• Layer-1 Smart Contracts,
Algorand Standard Assets,
Atomic Transfers

• Sufficient for many applications
– Stable coins, rewards, tokenization, …

– Simple market, voting, crowdfunding, simple decentralized exchange, …

• Same transaction fee, same latency (< 4.5s), same throughput
as Algos transactions

• More expressive than they may appear: how expressive? Open question
• But sometimes, not convenient enough

Conclusion

42

Algorand Features
Building layer by layer ...

Layer-2
Smart Contracts

Layer-1 Smart Contracts,
Algorand Standard Assets,

Atomic Transfers

Consensus protocol
(cryptocurrency = Algos)

Solving the
Blockchain
Trilemma

1. Same safety
2. Same speed
3. Same cost

1. More expressiveness
2. Without slowing down

layers below

43

Layer-2 Smart Contracts (Work in Progress)

• For contracts that are:
– Potentially too complex to write with layer-1: need for higher-level language

– Too computationally demanding: e.g., zkSNARK

• Goal: Allow such contracts while:
– Not slowing down the blockchain (latency & throughput)

– Keeping the blockchain secure

Goal

44

Layer-2 Smart Contracts (Work in Progress)

• Layer-1 currently:

Architecture

• Ethereum-like smart contracts:

• Algorand Layer-2 Smart Contracts

Contract Execution Committee

Selected as the
Consensus Committee using a VRF

Learn more
https://www.algorand.com/res
ources/blog/algorand-smart-

contract-architecture

45

Compact Certificates (Work in Progress)

• Allow other blockchains to efficiently check Algorand’s blocks
– With a short certificate

– That does not require VRF or complex cryptographic tools

• Facilitate interoperability between blockchains
– Example: replace hash-time lock contracts to transfer assets between chains

46

Start Building on Algorand

• Block explorer: goalseeker.purestake.io, algoexplorer.io
• Online tools: algodesk.io — create your first token & first smart contract
• Interactive tutorial: algorand.rockx.com
• Official SDK: JS, Python, Go, Java + community SDK: C#, Rust, …
• IDE: VSCode, IntelliJ Idea, Algorand Studio, …
• Free API services: algoexplorer.io, purestake.io (equivalent to Infura)
• Wallet for DApps: AlgoSigner (equivalent of MetaMask)
• Simplify DApp writing: reach.sh (bonus: same code works on Ethereum)
• Automate development of smart contracts and assets: Algorand Builder

Many tools to start developing right now

https://goalseeker.purestake.io/
https://algoexplorer.io/
https://algodesk.io/
https://algorand.rockx.com/
https://github.com/ObsidianLabs/vscode-algorand
https://github.com/bloxbean/algodea
https://github.com/ObsidianLabs/AlgorandStudio
https://algoexplorer.io/api-dev/v2
https://www.purestake.com/technology/algorand-api/
https://www.purestake.com/technology/algosigner
https://reach.sh/
https://github.com/scale-it/algorand-builder/

47

Start Building on Algorand

• Visit https://developer.algorand.org
– Getting started article: https://developer.algorand.org/articles/getting-started-algorand

– Tutorials, solutions, …

– Full documentation

– Source code: https://github.com/algorand

• Questions:
– Discord server: https://discord.gg/YgPTCVk

– Q&A: https://forum.algorand.org

– Office hours: https://www.algorand.com/developers

Resources

https://developer.algorand.org/
https://developer.algorand.org/articles/getting-started-algorand
https://github.com/algorand
https://discord.gg/YgPTCVk
https://forum.algorand.org/
https://www.algorand.com/developers

48

Join the Algorand Community!

• Become an Algorand ambassador
– https://algorand.foundation/2020-ambassador-rewards-program

• Write tutorials and articles for Algorand (devAmbassador):
– https://algorand.foundation/dev-ambassadors

• Get bounties:
– https://github.com/algorandfoundation/grow-algorand

• Development awards for a tool / application you developed
– https://algorand.foundation/developer-incentive-awards-program

• Apply for a grant
– https://algorand.foundation/grants-program

• Join a pre-accelerator or an accelerator
– https://algorand.foundation/ecosystem/accelerator

Contribute and get rewards!

https://algorand.foundation/2020-ambassador-rewards-program
https://algorand.foundation/dev-ambassadors
https://github.com/algorandfoundation/grow-algorand
https://algorand.foundation/developer-incentive-awards-program
https://algorand.foundation/grants-program
https://algorand.foundation/ecosystem/accelerator

Join the Algorand Community!
400+ Ambassadors From 66+ countries

